

Catalysts for Autothermal Reforming

Theodore Krause, Magali Ferrandon, Jennifer Mawdsley, and James Ralph

Electrochemical Technology Program
Argonne National Laboratory

May 24-27, 2004

This presentation does not contain any proprietary or confidential information

Hydrogen, Fuel Cells, and Infrastructure Technologies Office of Energy Efficiency and Renewable Energy U.S. Department of Energy

Objectives

- To develop advanced fuel processing catalysts that meet DOE performance requirements
 - Compared to Ni-based steam reforming catalysts, these new catalysts will
 - be able to process complex fuel mixtures, such as gasoline
 - process these fuels at higher rates
 - be more resistant to coking and sulfur poisoning
 - Improve our understanding of reforming reaction mechanisms, catalyst deactivation, and sulfur poisoning
 - Define operating parameters (e.g. air:fuel and steam:fuel ratios, temperature, gas hourly space velocities (GHSV), catalyst geometry) to optimize catalyst performance and lifetime

Budget, technical barriers and targets

- FY204 Funding: \$400K
- Technical barriers for hydrogen production
 - > A. Fuel Processor Capital Costs
 - G. Efficiency of Gasification, Pyrolysis, and Reforming Technologies
 - > Z. Catalysts
- Technical targets for reforming catalysts
 - yellocity (GHSV) ≥ 200,000 h⁻¹
 - \triangleright conversion ≥ 99.9% with H₂ selectivity ≥ 80%
 - lifetime > 5000 h
 - > cost <\$5/kWe</pre>

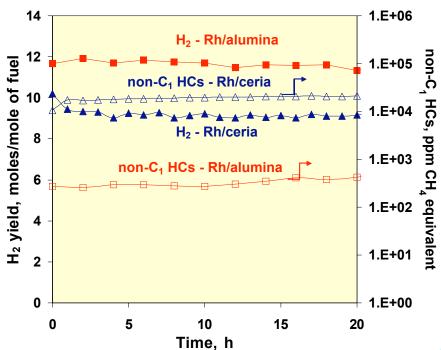
Approach

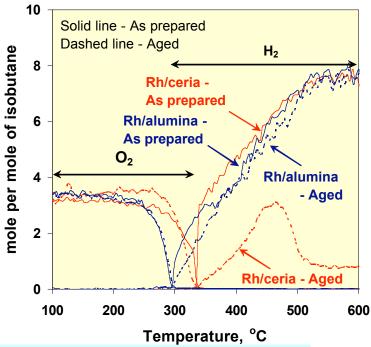
- Building on past ANL experience, we are investigating two classes of materials
 - transition metal(s) supported on oxide substrates
 - perovskites
- Determine catalyst performance (H₂ yield, CO_x selectivity, hydrocarbon breakthrough, fuel conversion) and stability as a function of:
 - catalyst composition
 - fuel composition and sulfur content
 - operating parameters: O₂:C and H₂O:C ratios, temperature, GHSV
- Conduct catalyst characterization and mechanistic studies to identify
 - factors influencing activity and selectivity
 - causes of deactivation
 - how sulfur affects catalyst activity

Project safety

- Internal safety reviews are performed for all aspects of this project to address ESH issues
 - Catalyst synthesis
 - Synthesis procedures are performed in fumehoods to exhaust vapors of powders and solvents
 - Waste chemicals are collected and disposed of through the Laboratory's Waste Management Operations
 - Microreactor systems
 - Located in fumehoods
 - Equipped with safety interlocks that shut the system down if excessive temperature or pressure is sensed or the fumehood ventilation fails
- Safety reviews are updated and renewed annually

Project timeline


May 2004: Completed Aug 2000: US Patent (6,110,861) Aug 2002: Demonstrated studies of support awarded Improved formulation of geometry ceria ATR catalyst May 2000: Aug 2003: Initiated Demonstrated 1,000 h development of Feb 2002: CRADA lifetime test Pt catalyst catalyst aging w/Süd-Chemie to optimize process May 1995: Started catalyst performance screening reforming catalysts Apr 1997: Demonstrated conversion of gasoline Aug 2001:Began May 2003: Demonstrated w/Pt catalyst work on perovskite improved ATR catalyst with more stable support catalysts April 2003: File patent Nov 1997: Demonstrated May 1999: Initiated applications for perovskite catalyst performance in licensing discussions and bimetallic catalysts engineering reactor with Süd-Chemie



Refractory oxides provide a more stable support for Rh than reducible oxides

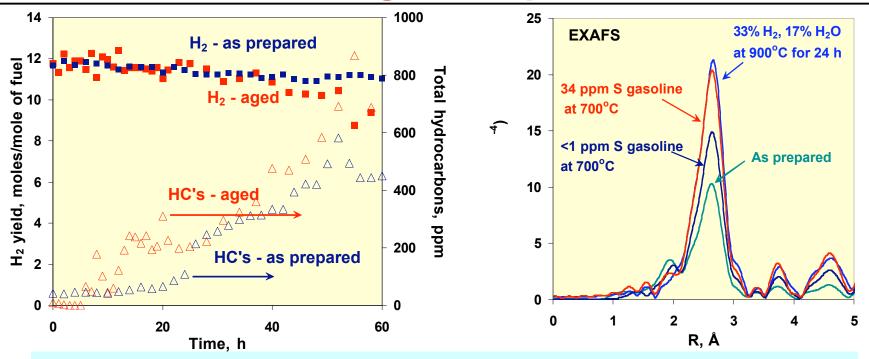
Higher H₂ yield and lower hydrocarbon breakthrough with Rh/alumina for gasoline ATR

Significant decrease in H₂ yield with Rh/ceria but not with Rh/alumina after aging* for isobutane ATR

 Surface Area, m²/g
 Rh dispersion, %

 Fresh
 Aged*
 Fresh
 Aged*

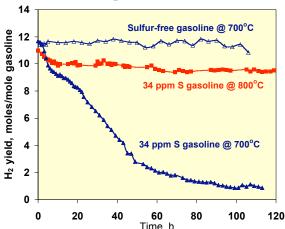
 Rh/alumina
 130
 105
 81
 31

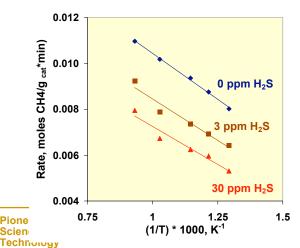

 Rh/ceria
 36
 3
 21
 1

* - treated at 900°C in H₂/H₂O for 24 h

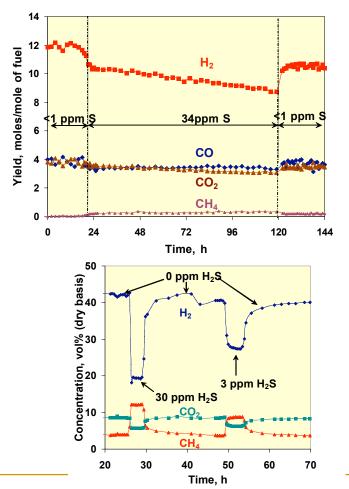
cience rtment inergy

We are working to develop an aging process to simulate effects of long-term operation

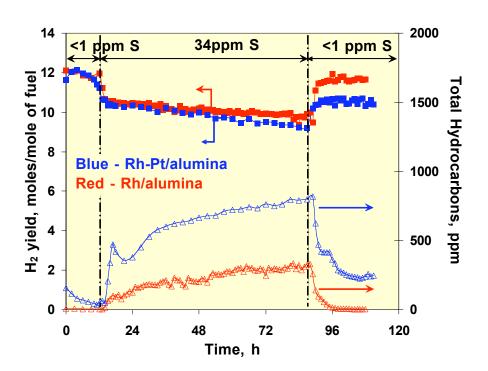

Rn dispersion, %			
Catalyst	<u>Initial</u>	Reoxidized	
As prepared	81		
33%H ₂ , 17% H ₂ O at 900°C - 24 h	31		
<1 ppm S gasoline at 700°C - 100 h	24	28	
34 ppm S gasoline at 700°C - 100 h	3	13	

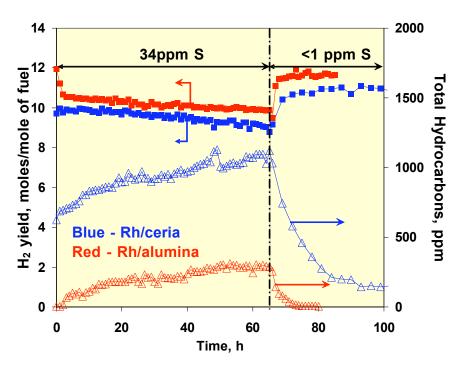


Reversible adsorption of sulfur appears to be the primary cause of sulfur poisoning with Rh


 Effect of sulfur poisoning decreases with increasing temperature

Loss in activity increases as H₂S concentration increases

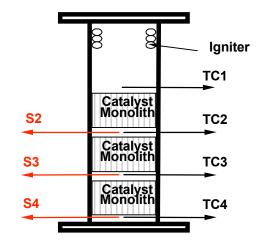

Most of the activity is recovered in ~1-2 h after sulfur is removed from feedstock

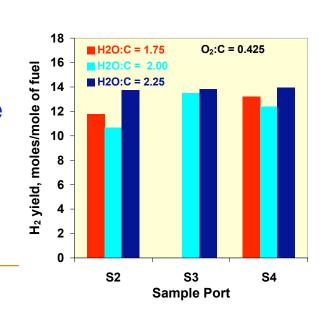


U.S. Department

Use of bimetallic formulations or sulfur-adsorbing supports has not improved the sulfur tolerance of Rh

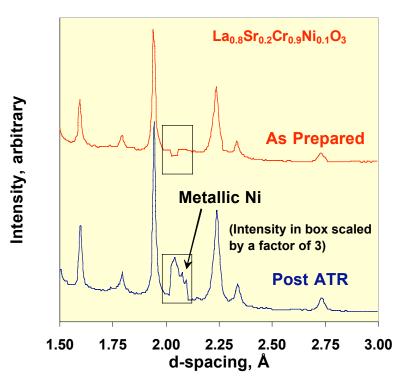
- The addition of a second metal is known to improve the sulfur tolerance of some catalysts, such as the addition of Pd to Pt catalysts used in petroleum refining
- Some supports, such as ceria, form a stable sulfide in the temperature range of ATR, which could serve as a potential "sink" for sulfur

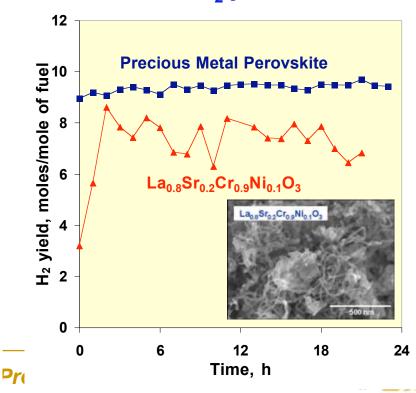




Proper selection of the structured support is critical for optimizing catalyst performance

- Performance of a Rh catalyst loaded onto 600-, 900-, and 1200-cpi monoliths and a 40-ppi metal foam for reforming gasoline is being evaluated to determine optimal support geometry
- Some preliminary observations
 - The highest temperature is observed at the exit of the first monolith
 - Nearly all of the H₂ is produced in the first monolith
 - CH₄ yield increases from the first to last monolith suggesting that methanation may be occurring as temperature decreases
- Data are being used to generate a reaction model


kW_e Reactor System



Less focus on perovskite catalysts

- Stability of Ni perovskite during ATR is an issue
- Results from electron microscopy and X-ray diffraction were inconclusive
- Neutron spectroscopy showed that metallic Ni particles was present

- Ni perovskites were active for gasoline ATR but the H₂ yield was low and decreased with time due to coking
- Substituting a precious metal for Ni produced a higher and more stable H₂ yield

Interactions and collaborations

University and industrial interactions

- University of Alabama (Prof. Ramana Reddy) to characterize ATR catalysts using SEM, TEM, and XPS
- University of Alabama (Prof. Alan Lane) to develop more sulfur tolerant ATR catalysts
- University of Puerto Rico, Mayagüez (Prof. Jóse Colucci) to determine operating parameters for reforming gasoline and biodiesel
- Participant in a proposal with General Electric and University of Minnesota submitted in response to the Hydrogen Production and Delivery Research Solicitation
- > Süd-Chemie, Inc., monolith and foam studies

Response to reviewers' comments from FY03

- More emphasis on sulfur tolerance
- Need more fundamental understanding of reaction and deactivation mechanisms
- What criteria can be used to decide when a catalyst is "good enough"
- Interaction with reforming work in the Hydrogen Program

Milestones

<u>Milestone</u>	<u>Date</u>
Determine the optimal support structure (monolith vs. foam) to minimize mass transfer effects	01/04 (05/04)
Complete benchmarking of the ANL ATR catalyst against other reforming catalysts under development	05/04
Complete 1000 h test with best catalyst formulation supported on structured support using 30 ppm sulfur gasoline	09/04

Future work

- Improve catalyst durability and minimize deactivation
 - Conduct characterization studies of spent catalysts to further understanding of deactivation mechanisms
 - Validate catalyst aging process
 - Conduct long-term testing of improved catalyst formulations
- Improve sulfur tolerance of catalysts by increasing our understanding of sulfur poisoning mechanisms
- Mechanistic studies to increase our understanding of reaction pathways
- Address catalyst issues identified in "FASTER" Program
 - Catalyst deactivation and structural stability issues (i.e., effect of frequent and rapid startup)
 - Obtain performance data as a function of operating parameters to develop ATR/SR reaction models

